This page shows how to operate Hive on MR3 in a non-secure Hadoop cluster without Kerberos. The same user, not necessarily an administrator of the Hadoop cluster, will run all the components of Hive on MR3, such as Metastore, HiveServer2, and Beeline. For running Metastore, we will use a Derby database included in Hive, so the user does not need a separate database server. By following the instruction, the user will learn:
- how to install and configure Hive on MR3 in a non-secure Hadoop cluster without Kerberos
- how to start and stop Metastore with a Derby database
- how to start and stop HiveServer2
- how to create Beeline connections and send queries to HiveServer2
This scenario has the following prerequisites:
- Java 8 or Java 17 is available. Java 17 should be installed in the same directory on every node.
- A non-secure Hadoop cluster 3 or higher is available.
- The user has access to the home directory and
/tmp
directory on HDFS.
This scenario should take less than 30 minutes to complete, not including the time for downloading an MR3 release.
In order to use a Derby database, we use the option--cluster
to choose the configuration files under the directoryconf/cluster
. In production, do not use--cluster
. Instead use the option--tpcds
.
For asking any questions, please visit MR3 Google Group or join MR3 Slack.
Installation
Download a pre-built MR3 release and uncompress it.
We rename the new directory to mr3-run
and change the working directory.
Renaming the new directory is not strictly necessary,
but it is recommended because the sample configuration file hive-site.xml
included in the MR3 release uses the same directory name.
$ wget https://github.com/mr3project/mr3-release/releases/download/v1.11/hivemr3-1.11-hive3.1.3-k8s.tar.gz
$ gunzip -c hivemr3-1.11-hive3.1.3-k8s.tar.gz| tar xvf -;
$ mv hivemr3-1.11-hive3.1.3-k8s/ mr3-run
$ cd mr3-run/
$ wget https://github.com/mr3project/mr3-release/releases/download/v1.11/hivemr3-1.11-java17-hive3.1.3-k8s.tar.gz
$ gunzip -c hivemr3-1.11-java17-hive3.1.3-k8s.tar.gz| tar xvf -;
$ mv hivemr3-1.11-java17-hive3.1.3-k8s/ mr3-run
$ cd mr3-run/
$ wget https://github.com/mr3project/mr3-release/releases/download/v1.12/hivemr3-1.12-java17-hive4.0.1-k8s.tar.gz
$ gunzip -c hivemr3-1.12-java17-hive4.0.1-k8s.tar.gz | tar xvf -;
$ mv hivemr3-1.12-java17-hive4.0.1-k8s/ mr3-run
$ cd mr3-run/
Configuring Java and Hadoop
Open env.sh
and set JAVA_HOME
and PATH
if necessary.
Set HADOOP_HOME
to the Hadoop installation directory.
$ vi env.sh
export JAVA_HOME=/usr/jdk64/jdk1.8 # Java 8
export PATH=$JAVA_HOME/bin:$PATH
export HADOOP_HOME=/usr/hdp/3.1.4.0-315/hadoop
USE_JAVA_17=false
$ vi env.sh
export JAVA_HOME=/usr/jdk64/jdk17 # Java 17
export PATH=$JAVA_HOME/bin:$PATH
export HADOOP_HOME=/usr/hdp/3.1.4.0-315/hadoop
USE_JAVA_17=true
For Java 8 only
Update the configuration keys mr3.am.launch.cmd-opts
and mr3.container.launch.cmd-opts
in conf/cluster/mr3/mr3-site.xml
.
- add
-XX:+AggressiveOpts
for performance. - remove
--add-opens java.base/java.net=ALL-UNNAMED --add-opens java.base/java.util=ALL-UNNAMED --add-opens java.base/java.time=ALL-UNNAMED --add-opens java.base/java.util.concurrent.atomic=ALL-UNNAMED --add-opens java.base/java.io=ALL-UNNAMED ...
(which are Java 17 options).
Update the configuration keys mr3.am.launch.env
and mr3.container.launch.env
in conf/cluster/mr3/mr3-site.xml
.
- remove
JAVA_HOME=/home/hive/jdk17/
.
For Java 17 only
Update the configuration keys mr3.am.launch.env
and mr3.container.launch.env
in conf/cluster/mr3/mr3-site.xml
.
- set
JAVA_HOME=/home/hive/jdk17/
to point to the installation directory of Java 17 on every worker node.
In order to execute Metastore and HiveServer2 with Java 17,
JAVA_HOME
in hadoop-env.sh
in the Hadoop configuration directory
should also be set to point to the installation directory of Java 17.
$ vi /etc/hadoop/conf/hadoop-env.sh
JAVA_HOME=/home/hive/jdk17/
Configuring Hive on MR3
Open env.sh
and
set the following environment variables to adjust the memory size (in MB) to be allocated to each component:
HIVE_METASTORE_HEAPSIZE
specifies the memory size for Metastore.HIVE_SERVER2_HEAPSIZE
specifies the memory size for HiveServer2.HIVE_CLIENT_HEAPSIZE
specifies the memory size of HiveCLI (hive
command) and Beeline (beeline
command).MR3_AM_HEAPSIZE
specifies the memory size of MR3 DAGAppMaster.
In our example, we use the following values.
$ vi env.sh
HIVE_METASTORE_HEAPSIZE=4096
HIVE_SERVER2_HEAPSIZE=16384
HIVE_CLIENT_HEAPSIZE=1024
MR3_AM_HEAPSIZE=10240
HIVE?_HDFS_WAREHOUSE
specifies the warehouse directory on HDFS.
Update it to use the current user name, e.g.:
$ echo $USER
gla
$ vi env.sh
HIVE3_HDFS_WAREHOUSE=/user/gla/warehouse
Open conf/cluster/hive3/hive-site.xml
(for Hive 3 on MR3) or conf/cluster/hive4/hive-site.xml
(for Hive 4 on MR3) and set the following four configuration keys
according to the current user name (instead of the default user hive
) and the working directory
(instead of the default directory /home/hive
).
$ vi conf/cluster/hive3/hive-site.xml
<property>
<name>hive.users.in.admin.role</name>
<value>gla</value>
</property>
<property>
<name>hive.aux.jars.path</name>
<value>/home/gla/mr3-run/hive/hivejar/apache-hive-3.1.3-bin/lib/hive-llap-common-3.1.3.jar,/home/gla/mr3-run/hive/hivejar/apache-hive-3.1.3-bin/lib/hive-llap-server-3.1.3.jar,/home/gla/mr3-run/hive/hivejar/apache-hive-3.1.3-bin/lib/hive-llap-tez-3.1.3.jar</value>
</property>
<property>
<name>hive.exec.scratchdir</name>
<value>/tmp/gla</value>
</property>
<property>
<name>hive.server2.logging.operation.log.location</name>
<value>/tmp/gla/operation_logs</value>
</property>
$ vi conf/cluster/hive4/hive-site.xml
<property>
<name>hive.users.in.admin.role</name>
<value>gla</value>
</property>
<property>
<name>hive.aux.jars.path</name>
<value>/home/gla/mr3-run/hive/hivejar/apache-hive-4.0.1-bin/lib/hive-llap-common-4.0.1.jar,/home/gla/mr3-run/hive/hivejar/apache-hive-4.0.1-bin/lib/hive-llap-server-4.0.1.jar,/home/gla/mr3-run/hive/hivejar/apache-hive-4.0.1-bin/lib/hive-llap-tez-4.0.1.jar,/home/gla/mr3-run/hive/hivejar/apache-hive-4.0.1-bin/lib/hive-iceberg-handler-4.0.1.jar,/home/gla/mr3-run/hive/hivejar/apache-hive-4.0.1-bin/lib/log4j-1.2-api-2.18.0.jar</value>
</property>
<property>
<name>hive.exec.scratchdir</name>
<value>/tmp/gla</value>
</property>
<property>
<name>hive.server2.logging.operation.log.location</name>
<value>/tmp/gla/operation_logs</value>
</property>
In hive-site.xml
, the following configuration keys specify
the resource to be allocated to a Map Task, a Reduce Task, or a ContainerWorker.
By default, we allocate 4GB and a single core to a Map Task and a Reduce Task.
A single ContainerWorker uses 40GB of memory and 10 cores, so it can accommodate 10 concurrent Tasks.
<property>
<name>hive.mr3.map.task.memory.mb</name>
<value>4096</value>
</property>
<property>
<name>hive.mr3.map.task.vcores</name>
<value>1</value>
</property>
<property>
<name>hive.mr3.reduce.task.memory.mb</name>
<value>4096</value>
</property>
<property>
<name>hive.mr3.reduce.task.vcores</name>
<value>1</value>
</property>
<property>
<name>hive.mr3.all-in-one.containergroup.memory.mb</name>
<value>40960</value>
</property>
<property>
<name>hive.mr3.all-in-one.containergroup.vcores</name>
<value>10</value>
</property>
When updating these configuration keys, we should meet the following requirements:
hive.mr3.map.task.memory.mb
<=hive.mr3.all-in-one.containergroup.memory.mb
hive.mr3.map.task.vcores
<=hive.mr3.all-in-one.containergroup.vcores
hive.mr3.reduce.task.memory.mb
<=hive.mr3.all-in-one.containergroup.memory.mb
hive.mr3.reduce.task.vcores
<=hive.mr3.all-in-one.containergroup.vcores
For simplicity,
disable impersonation by setting hive.server2.enable.doAs
to false in hive-site.xml
.
<property>
<name>hive.server2.enable.doAs</name>
<value>false</value>
</property>
Creating directories on HDFS
Create the warehouse directory specified in env.sh
, e.g.:
$ grep HIVE3_HDFS_WAREHOUSE env.sh
HIVE3_HDFS_WAREHOUSE=/user/gla/warehouse
$ hdfs dfs -mkdir -p /user/gla/warehouse
Create a directory for storing MR3 and Tez jar files.
$ hdfs dfs -mkdir -p /user/gla/lib
Load MR3 jar files.
$ mr3/upload-hdfslib-mr3.sh
Load Tez jar files.
$ tez/upload-hdfslib-tez.sh
Make sure that /tmp/gla
does NOT exist on HDFS.
$ hdfs dfs -ls /tmp/gla
ls: `/tmp/gla': No such file or directory
If the directory already exists (e.g., when running Hive on MR3 for the second time), make sure that its permission is set to 733. HiveServer2 automatically creates a new directory with permission 733 if it does not exist.
$ hdfs dfs -ls /tmp/ | grep gla
drwx-wx-wx - gla hdfs 0 2022-12-14 17:15 /tmp/gla
Creating temporary directories
Create a new directory specified by hive.server2.logging.operation.log.location
.
$ ls -alt /tmp/gla/operation_logs
ls: cannot access /tmp/gla/operation_logs: No such file or directory
$ mkdir -p /tmp/gla/operation_logs
Running Metastore
Metastore uses the port specified by the environment variable HIVE?_METASTORE_PORT
in env.sh
.
Make sure that the port is not in use.
$ grep HIVE3_METASTORE_PORT env.sh
HIVE3_METASTORE_PORT=9830
$ ss -anpt | grep -E "LISTEN.*:9830"
$
$ grep HIVE4_METASTORE_PORT env.sh
HIVE4_METASTORE_PORT=9840
$ ss -anpt | grep -E "LISTEN.*:9840"
$
Run Metastore with a Derby database using --cluster
option, and initialize it using --init-schema
option.
$ hive/metastore-service.sh start --cluster --init-schema
After a while, check if Metastore has successfully started.
$ tail /data2/gla/mr3-run/hive/metastore-service-result/hive-mr3--2022-12-14-17-31-37-8e457816/out-metastore.txt
Initialization script completed
schemaTool completed
...
2022-12-14 17:31:47: Starting Hive Metastore Server
...
When the user restarts Metastore, do not use --init-schema
option in order to reuse existing Hive databases.
For example, the user can kill Metastore and restart it as follows.
(If the following command fails to kill Metastore for some reason, manually kill with kill -9
.)
$ hive/metastore-service.sh stop --cluster
$ hive/metastore-service.sh start --cluster
The log file for Metastore is found under /tmp/gla
.
$ ls /tmp/gla/hive.log
/tmp/gla/hive.log
Running HiveServer2
Run HiveServer2 using --cluster
option.
In order to use LocalProcess mode for MR3 DAGAppMaster, use --amprocess
option.
In our example, we use --amprocess
option.
$ hive/hiveserver2-service.sh start --cluster --amprocess
After a while, check if HiveServer2 has successfully started by inspecting its log file.
$ grep -e "New MR3Session created" /data2/gla/mr3-run/hive/hiveserver2-service-result/hive-mr3--2022-12-14-17-33-01-cfbe84f4/hive-logs/hive.log
2022-12-14T08:33:20,724 INFO [main] session.MR3SessionManagerImpl: New MR3Session created: bdc0ac26-3101-4777-bfd2-0f2a065d3f8d, gla
The user can find a new Yarn application of type mr3
submitted by the user.
$ yarn application -list
...
application_1660836356025_0544 bdc0ac26-3101-4777-bfd2-0f2a065d3f8d mr3 gla default RUNNING UNDEFINED 0% N/A
The user can also find the process for MR3 DAGAppMaster.
$ ps -ef | grep DAGAppMaster | grep mr3
gla 181870 181478 25 17:33 pts/5 00:00:10 /usr/jdk64/jdk1.8.0_112/jre/bin/java -server -Djava.net.preferIPv4Stack=true -Dhadoop.metrics.log.level=WARN -XX:+UseNUMA -XX:+UseG1GC -XX:+ResizeTLAB -Xmx8192m -Xms4096m -Dlog4j.configurationFile=mr3-container-log4j2.properties -Dmr3.root.logger=INFO -Dyarn.app.container.log.dir=/data2/gla/mr3-run/hive/hiveserver2-service-result/hive-mr3--2022-12-14-17-33-01-cfbe84f4/application_1660836356025_0544 -Dsun.nio.ch.bugLevel='' com.datamonad.mr3.master.DAGAppMaster --session
The user can find the log file for MR3 DAGAppMaster.
$ ls /data2/gla/mr3-run/hive/hiveserver2-service-result/hive-mr3--2022-12-14-17-33-01-cfbe84f4/application_1660836356025_0544/run.log
/data2/gla/mr3-run/hive/hiveserver2-service-result/hive-mr3--2022-12-14-17-33-01-cfbe84f4/application_1660836356025_0544/run.log
Running queries
Download a sample dataset.
$ wget https://github.com/mr3project/mr3-release/releases/download/v1.0/pokemon.csv
Run Beeline using --cluster
option.
$ hive/run-beeline.sh --cluster
Use the default database.
0: jdbc:hive2://blue0:9832/> use default;
Create a table called pokemon
.
0: jdbc:hive2://blue0:9832/> CREATE TABLE pokemon (Number Int,Name String,Type1 String,Type2 String,Total Int,HP Int,Attack Int,Defense Int,Sp_Atk Int,Sp_Def Int,Speed Int) row format delimited fields terminated BY ',' lines terminated BY '\n' tblproperties("skip.header.line.count"="1");
Import the sample dataset.
0: jdbc:hive2://blue0:9832/> load data local inpath './pokemon.csv' INTO table pokemon;
Execute queries.
0: jdbc:hive2://blue0:9832/> select avg(HP) from pokemon;
...
0: jdbc:hive2://blue0:9832/> create table pokemon1 as select *, IF(HP>160.0,'strong',IF(HP>140.0,'moderate','weak')) AS power_rate from pokemon;
...
0: jdbc:hive2://blue0:9832/> select COUNT(name), power_rate from pokemon1 group by power_rate;
...
Exit Beeline. The warehouse directory on HDFS has now two sub-directories.
$ hdfs dfs -ls /user/gla/warehouse/
Found 2 items
drwxr-xr-x - gla hdfs 0 2022-12-14 08:35 /user/gla/warehouse/pokemon
drwxr-xr-x - gla hdfs 0 2022-12-14 08:35 /user/gla/warehouse/pokemon1
Stop HiveServer2. MR3 DAGAppMaster also stops.
$ hive/hiveserver2-service.sh stop --cluster
Stopping HiveServer2 and Metastore
Stop HiveServer2.
$ hive/hiveserver2-service.sh stop --cluster
Stop Metastore.
$ hive/metastore-service.sh stop --cluster
The user can check if Metastore has successfully stopped by reading its log file.
$ tail -n3 /tmp/gla/hive.log
/************************************************************
SHUTDOWN_MSG: Shutting down HiveMetaStore at blue0/192.168.10.101
************************************************************/